Texas, Missouri and Michigan Lead Six Universities Tapped For NASA’s Lunar Surface Program

LuSTR program taps six universities - Courtesy NASA

NASA has selected six U.S. universities for lunar research to bring about advancements in in-situ resource utilization and sustainable power solutions. Selected proposals were submitted by University of Texas El Paso; Washington University in St. Louis; Michigan Technological University; UC-Santa Barbara; Vanderbilt and Ohio State.

NASA tabbed three proposals to research new ways to identify resources, like water, on the Moon, and inventive designs for extraction and utilization equipment.

• The University of Texas in El Paso – one of the largest Hispanic-serving institutions in the country – will research an advanced thermal mining approach that could release, trap, and transport water vapor found on the Moon. The team, led by principal investigator Ahsan Choudhuri, plans to experimentally demonstrate over two pounds (about one kilogram) of collection capacity within 11 hours.

• Washington University in St. Louis will build a rover-mounted drill to quantify the 3D distribution of water at the Moon’s South Pole. A laser instrument located at the bottom of the drill, capable of analyzing regolith, would quantify the amount of water and other chemicals present beneath the surface. Principal investigator Alian Wang will lead the research team and reconnaissance instrument development.

• Michigan Technological University in Houghton will adapt a heated percussive cone penetrometer – an engineering instrument regularly used on Earth – to characterize the strength of lunar soil, or regolith. Understanding a lunar region’s regolith strength could inform methods of excavating water and building structures using local materials. Paul van Susante will serve as the project’s principal investigator.

“Our inaugural LuSTR opportunity targeted two technology areas within NASA’s Lunar Surface Innovation Initiative that are essential to the agency’s Artemis program, which will land the first woman and next man on the Moon,” said Walt Engelund, deputy associate administrator for programs in NASA’s Space Technology Mission Directorate. “The systems developed by U.S. universities could make future exploration more accessible, robust, and exciting.”

Three additional university teams will mature next-generation energy storage and power distribution technologies. The projects could help power in-situ resource utilization operations and other robust infrastructure on the Moon.

• The University of California in Santa Barbara, led by principal investigator Philip Lubin, will research wireless power transfer feasibility from a base station to multiple distant assets on the Moon. Small rovers, for example, could be equipped with low-power beacons capable of receiving around 100 Watts of power in regions where solar or tethered power transfer is impractical, such as in the Moon’s deep and dark craters.

• Vanderbilt University in Nashville will look into using silicon carbide power components for lunar surface applications. At present, these power components are particularly susceptible to radiation and frequently fail or experience reduced performance in space. Principal investigator Arthur Witulski will lead the project.

• The Ohio State University in Columbus will explore flexible energy distribution between multiple, different power grids – that may use solar, radioisotope, and battery sources – that could be deployed on the lunar surface to support the Artemis program. The project, led by Jin Wang, will focus on control methodologies and perform both hardware and software demonstrations.